

INSA strasbourg Graduate School of Science and Technology ARCHITECTS + ENGINEERS

Long-run Forecasting of Emerging strassoure Technologies with Logistic Models and Growth of Knowledge

Dmitry KUCHARAVY dmitry.kucharavy@insa-strasbourg.fr

Eric SCHENK, eric.schenk@insa-strasbourg.fr Roland DE GUIO, roland.deguio@insa-strasbourg.fr

CONTENT

- 1: Motivation of the work and previous results
- 2: What are logistic component and logistic models?
- 3: Growth of knowledge and logistic models?
- 4: Future work

1: Motivations

[invention innovation]

1. Motivations

[Previous work]

- Previous work
 - Qualitative approach
 - Quantitative methods :use of logistic and logistic substitution model with so called naive approach
- Today's presentation

logistic component model, with a causal approach linking it with the qualitative method (ICED 07).

2: Simple logistic (symmetric S-curve)

[introduction: rate of growth, cumulative growth]

$$N(t) = \frac{K}{1 + e^{-\alpha t + \beta}}$$

- ☐K limit of growth
- ☐tm midpoint of growth trajectory
- $\Box \Delta t$ characteristic duration of growth

R. De Guio

2: Logistic model

[Component logistic model]

☐ One or several S curves?

^{*} Source: Modis, T. Predictions - 10 Years Later. (Growth Dynamics, Geneva, Switzerland, 2002), pp. 149. ISBN 2-9700216-1-7.

[the 4 S-curve of this growth process]

THE STABLE ELEMENTS WERE DISCOVERED IN CLUSTERS

^{*} Source: Modis, T. Predictions - 10 Years Later. (Growth Dynamics, Geneva, Switzerland, 2002), pp. 149. ISBN 2-9700216-1-7.

[application in technology forecasting:initial data 1/3]

[application 2/3: single logistic fitting]

[application 3/3: multi-logistic fitting]

Naive approach and growth measure with physical variable

R. De Guio

3: Growth of knowledge and logistic models

[concepts and remaining problems]

- What kind of information about knowledge should be measured?
 - before system passes the <u>'infant mortality' threshold</u>;
 - •before having enough data for growing variable trend.

3: Growth of knowledge and logistic models

[contradiction as causal variable]

Future solution = what is already solved(t) + what must be solved(t)

Joint evolution of solved and unsolved contradictions

3: Growth of knowledge and logistic models

[How to get the data (based on previous work)]

4: What would we do with it?

[prospective]

It is proposed:

- Validation of causal model as logistic one through experience;
- Discriminate relevant and non relevant contradictions in the network (separate signal from noise);

Thank you for your attention :)

Roland DE GUIO,

Roland.deguio@insa-strasbourg.fr

LGECO - Design Engineering Laboratory, INSA Strasbourg 24 bd de la Victoire, 67084 STRASBOURG, France

References

- 1. D. Kucharavy, and R. De Guio, Problems of Forecast, ETRIA TRIZ Future 2005, Graz, Austria, 2005. 219-235.
- 2. D. Kucharavy, R. De Guio, L. Gautier, and M. Marrony, Problem Mapping for the Assessment of Technological Barriers in the Framework of Innovative Design, 16th International Conference on Engineering Design, ICED'07, Ecole Centrale Paris, Paris, France, 2007.
- 3. D. Kucharavy, and R. De Guio, Application of S-Shaped Curves, 7th ETRIA TRIZ Future Conference, Kassel University Press GmbH, Kassel, Frankfurt, Germany, 2007.
- 4. D. Kucharavy, and R. De Guio, Logistic Substitution Model and Technological Forecasting, 8th ETRIA TRIZ Future Conference, University of Twente, Enschede, Netherlands, 2008.
- 5. C. Marchetti, and N. Nakicenovic, The Dynamics of Energy Systems and the Logistic Substitution Model, International Institute for Applied Systems Analysis, Laxenburg, Austria. 1979.
- 6. P. S. Meyer, J. W. Yung, and J. H. Ausubel, A Primer on Logistic Growth and Substitution: The Mathematics of the Loglet Lab Software, Technological Forecasting and Social Change, 61(3), (1999) 247-271.
- 7. P. Llerena, and E. Schenk, Technology Policy and A-Synchronic Technologies: The Case of German High-Speed Trains, in Innovation Policy in a Knowledge Based Economy, P. Llerena and M. Matt, eds., Springer, Berlin, 2005, 115-134.
- 8. N. Khomenko, R. De Guio, L. Lelait, and I. Kaikov, A Framework for OTSM-TRIZ Based Computer Support to be used in Complex Problem Management, International Journal of Computer Applications in Technology (IJCAT), 30(1/2), (2007) 88-104.