

GETTING PRESCIENT KNOWLEDGE

KUCHARAVY Dmitry dzmitry.kucharavy@polimi.it – http://www.seecore.org

Prescient Knowledge

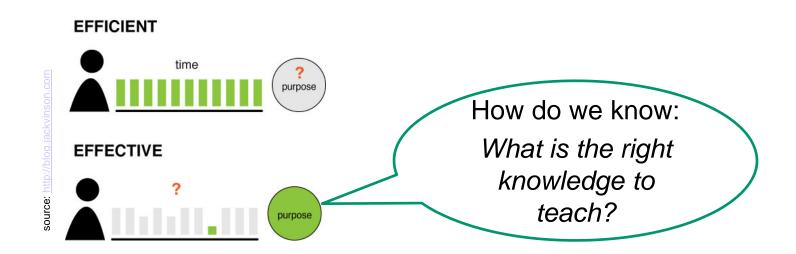
= Knowledge useful in the future

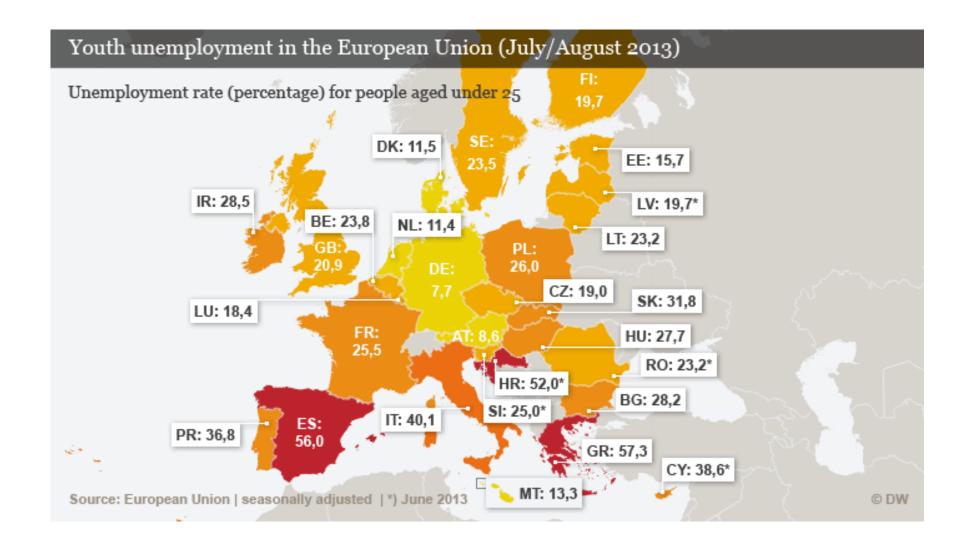
Knowledge

= the information + skills + understanding that you have gained through learning or experience

Sources: Longman dictionary of Contemporary English [http://www.ldoceonline.com/dictionary/knowledge];

18	Baccalauréat protection terminale protection		Baccalauréat	Baccalauréat		en
17	première professionnelle		général terminale	technologique terminale	lycéo	enseignement
16	terminale BEP	terminale BEP	première	première	lycée	jner
15	seconde CAP	seconde BEP	seconde générale	et technologique		nei
14	trainième					
13	quatrième collège			secondaire		
12	cinquième				conlege	nda
11	sixième				ire	
10	cours moyen 2					e
9	cours moyen 1 école			enseignement		
8	cours élémentaire niveau 2 élémentaire			ign		
7	cours élémentaire niveau 1			eme		
6						
5	grande section				école	primaire
4	moyenne section				maternelle	nair
3	petite section					. e


Sources: http://en.wikipedia.org/wiki/Education_in_France;


[LEVELS		THE LMD SYSTEM	
_		Universities	1	
9	18 semesters (+ 9 years)	State diploma of doctor of medicine		
8	DOCTORATE 16 semesters (+ 8 years)	• Doctorate / PhD	Grandes Écoles Schools of business Schools of engineering	Schools of art Schools of architecture Other institutions (lycées, specialized schools)
6	12 semesters (+ 6 years)	State diploma of doctor of dental surgery State diploma of doctor of pharmacy	Specialized <i>Mastère</i> - MS Master of Business Administration - MBA	HMONP (professional credential for independent practice of architecture
5	MASTER 10 semesters (+ 5 years) 300 ECTS	Research master Professional master Engineering degree	Engineering degree Master of Science - MSc Business school diplomas Degrees of the <i>Grandes Ecoles</i>	Diploma of art schools (DNSEP) State diploma of architect Diplomas of specialized schools (health, social work, tourism)
3	LICENCE 6 semesters (+ 3 years) 180 ECTS	Licence (bachelor) Licence professionnelle (professional bachelor)		Diplomas of art schools (DNAT – DNAP) Architecture diploma
2	4 semesters (+ 2 years)	University diploma in technology (DUT)	Admission to the first year of a Grande École program Preparation for admission to Grandes Écoles (CPGE)	Diploma of art schools (DMA) Higher technical certificate (BTS)

Sources: www.usa.campusfrance.org;

Efficiency is doing things right; effectiveness is doing the right things...

- Peter Drucker

...The righter we do the wrong thing, the wronger we become...

- Russel Ackoff

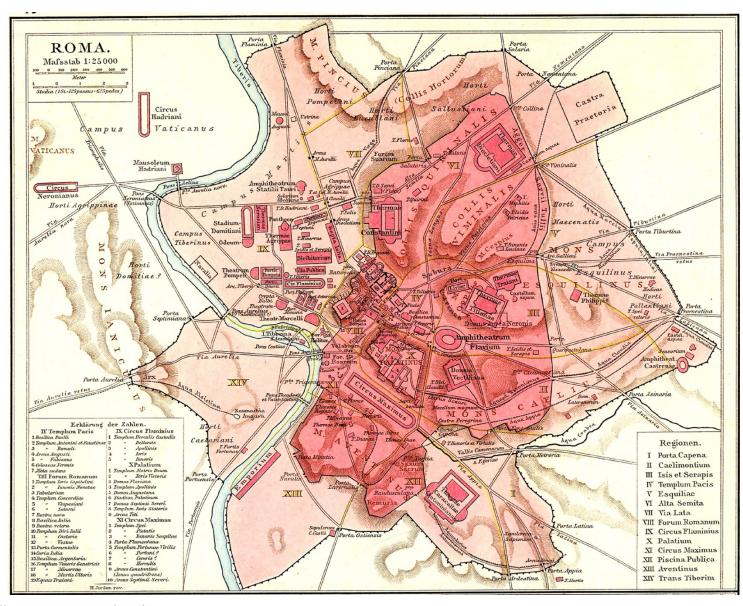
Is it feasible to design educational programs without knowing what will be societal needs in 20 years?

available Information

+

today Knowledge ⇒ Interpretation

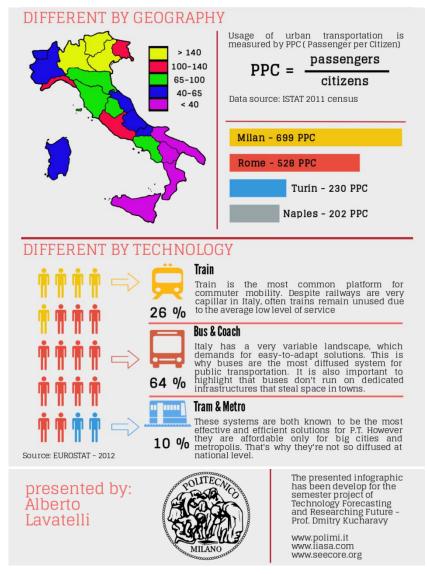
+

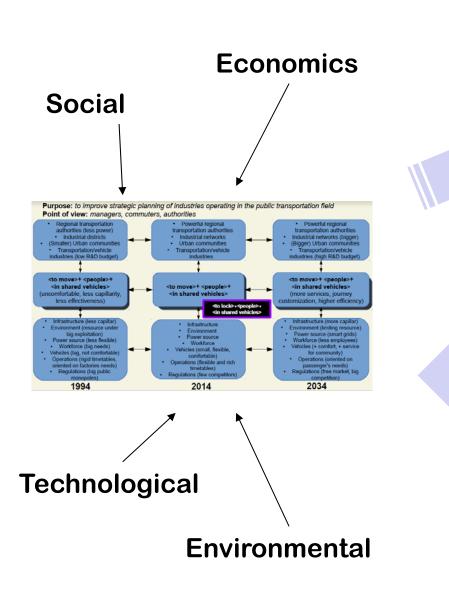

Intuition (biased?)

Decisions about education programs

R1-: How to gain these knowledge? - **knowledge** by definition comes from past experience by learning V: available R2+: Reliable long-term forecast; Confident management of education → Desired result prescient knowledge R1+: Well-known traditional approach for getting information and knowledge (business as usual) Λ: are not available R2-: Reliable long-term forecast is impossible; Dubious management of education (supposed to be regularly updated)

- attributed to Niels Bohr

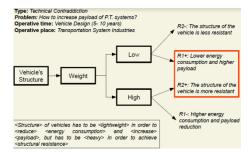

Problems are more important than solutions. Solutions can become obsolete when Problems remain.

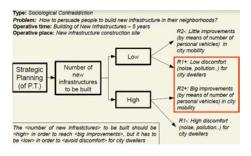


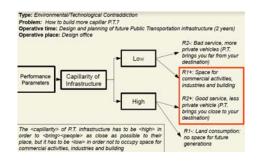
Sources: http://en.wikipedia.org/wiki/Rome

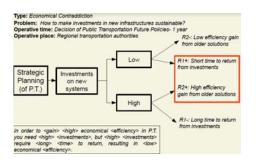
14

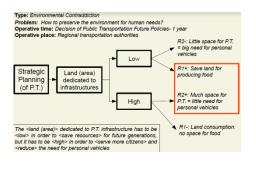
to know about the present: public transportation in Italian cities

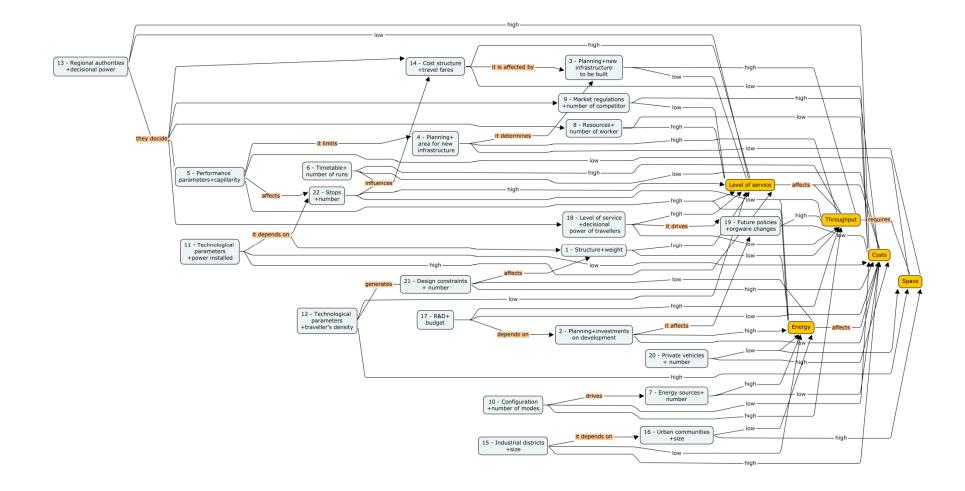

Economic	cal context	Technolog	ical context
Drivers	Barriers	Drivers	Barriers
To bring workers to their job in a shorter time To move people with less costs Minimize workforce to run public services	Long time to return from investments High costs in upgrading public transportation systems Cost of technological development Cost of new infrastructures	Higher efficiency in energy transformation Safety enhancement More capillarity Lightweight structures More efficient operations (new "orgware")	Difficult to manifacture Need to remove old solutions (decommissioning problems) Reliability of new technologies Old/new "orgware" transition is critical
Sociologi	cal context	Environme	ntal context
Drivers	Barriers	Drivers	Barriers
P.T. improves life quality in big cities Benefit for community (less pollution) Benefit for one's self (good service = no need of personal vehicles)	Workforce reduction (for public services) Infrastructural NIMBY sindromes "Old habits die hard": society's inertia throughout change	Reduce air pollution Save resources for future generations Reducing energy consumption Reducing the use of private vehicles = reducing traffic jam	Substituting or improving old technologies require energy New infrastructures means consumption of new lands Not every solution is suitable for a specific

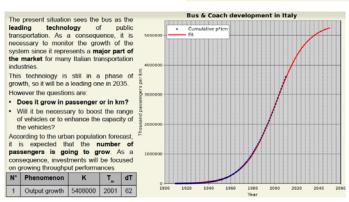

- 1) How to increase payload of P.T. systems?
- 2) How to make investments in new infrastructures sustainable?
- 3)How to persuade people to build new infrastructure in their neighborhoods?
- 4)How to preserve the environment for human needs?
- 5)How to build more capillar P.T.?
- 6)How to plan the operations in order to follow the passenger's needs?
- 7) How to increase the flexibility of power supply?
- 8) How to reduce the need of workforce for P.T.?
- 9)How to regulate the market in order to make P.T. services more economical?
- 10) How to find a P.T. that is suitable for a complex landscape?
- 11)How to bring workers to factories in a faster way?
- 13) How is it possible for regional authorities to gain more power?
- 14) How is it possible for society to benefit from P.T.?
- 15)How can industrial districts grow bigger?
- 16)How can urban communities grow bigger?
- 17)How to increase R&D budget?
- 18) How to make P.T. systems more customizable?
- 19) How to change orgware without problems?
- 20) How to reduce traffic jam and the need for private vehicles?
- 21)How to avoid decomissioning problems?
- 22) How to increase number of stops without speed reduction?


16


describe problems using contradiction model


1)How to increase payload of P.T. systems? 2) How to make investments in new infrastructures sustainable? 3)How to persuade people to build new infrastructure in their neighborhoods? 4) How to preserve the environment for human needs? 5) How to build more capillar P.T.? 6) How to plan the operations in order to follow the passenger's needs? 7)How to increase the flexibility of power supply? 8) How to reduce the need of workforce for P.T.? 9)How to regulate the market in order to make P.T. services more economical? 10) How to find a P.T. that is suitable for a complex landscape? 11) How to bring workers to factories in a faster way? 13) How is it possible for regional authorities to gain more power? 14) How is it possible for society to benefit from P.T.? 15) How can industrial districts grow bigger? 16)How can urban communities grow bigger? 17)How to increase R&D budget? 18) How to make P.T. systems more customizable? 19) How to change orgware without problems? 20)How to reduce traffic jam and the need for private vehicles? 21)How to avoid decomissioning problems? 22) How to increase number of stops without speed reduction?




to use network of contradictions for getting prescient knowledge

- 1. to identify and measure critical-to-X features of future systems
- 2. to identify most important problems to be addressed in the first place
- 3. to localize existing solutions according to problems
- 4. to monitor evolution of system in time
- 5. to support strategic decisions and plannings
- 6. ???

Critical feature Units How in the 2035? In the future we will have more pkm, while it is expected that passenger·km/ Costs costs (€) will be slightly reduced. In order to comply to the limiting resources (mostly pollution), Energy /kWh in the future we will spend less energy for increased pkm. In 2035 it is expected that area occupied by P.T. systems will not vary, however the output (pkm) will grow. Space In the future passengers will travel for less time thanks to the increased speed of transportation. As a result, throughput Throughput will be increased. It is expected that in future the percentage of delays will decline, thanks to relevant orgware changes. As a Level of service

public transportation usage in 2035

To sum up 2035 technologies

	Small cities (<200k)	Medium cities (200k-900k)	Big Cities (>900k)
Metro	•	•	Network in expansion in Milan. Minor expansion in Rome and Turin. Increase passenger widely. It will become skeleton for other systems.
Train		Cities interlinked by industrial network will see a substantial growth of train passengers for local transport	Train will integrate with metro in multi-modal way, in order to reach city centre by underground. Increase in passenger and average speed
Tram	Will appear in Northern Italy as multi-modal. Under 10% threshold	Will appear in Northern Italy as inter-modal. Under 10% threshold	Tram will integrate with busses, but there won't be space for new infrastructure. Old ones repowered
Bus	Leading system, growth in passenger and technological evolution	Leading system, growth in passenger and network. Technological evolution	Bus in big cities will have always more dedicated roads, due to traffic policies. More passengers
Bike Sharing	Implemented, but won't reach 10% threshold	Widely implemented, but won't reach 10% threshold	Big usage, but still won't reach 10% threshold
Car Sharing	-	-	Big development at orgware level. It will reach 10% threshold by 2030

The next (2035) system

New system traits	Sub-features		
Use existing	Exploit space/volume more efficiently		
infrastructures and	Automatic or semi-automatic guidance		
technologies	At least 10% increase in average speed		
Intermodal, multi	Vehicle able to run on road & railways		
modal	Vehicle able to automatically manage their speed/stops in order to synchronize with connecting schedules		
	30% less weight (reach structural efficiency of aircrafts)		
Optimized design	20% less energy dissipation (improved aerodynamics, contact drag, energetic efficiency of engines).		
	Optimize concentration of passenger in a single unit of vehicle with space/comfort of passengers		
Llee flexible newer	Smart grid compliance		
Use flexible power systems	Dual motor equipment: one dedicated to low speed- high acceleration, the other to high speed- low acceleration		
	Full broadband connection to the internet		
Wider offer of services	On the go shops: buy things during the journey, retire things on the arrival station		
00,1,000	On the go offices: possiblility to run everyday bureaucracy while travelling		

- 2004–2005: Project Technological forecasting of Fuel Cells for small stationary applications, EIFER, Karlsruhe, Germany;
- 2005-2006: Project Technological forecast of **Distributed Generation** (DG), EIFER, Karlsruhe, Germany;
- 2005-2009: 9 publications and 3 research reports about methodology of technological forecasting;
- 2008, June 26-29: 4 days seminar: Technological Forecasting: prediction of technology change. Apeiron, at Vinci, Italy;
- 2010, December: 3 days seminar: Forecasting the Problems, Arçelik, at Istanbul, Turkey;
- 2011-2012: Project Forecasting the parameters of the technological dynamics of a technological core area of Chilean mining industry, CBC, Santiago, Chile;
- 2013- : European R&D Project: FORMAT (FOrecast and Roadmapping for MAnufacturing Technologies)
- 2014 : **64 h course** (6 credits): *Technology Forecasting and Researching Future*. at Politecnico di Milano, Italy

up to date Data

+

Knowledge about problems

⇒ consensus Interpretation

+

conscious Intuition

problem-based Decisions

KUCHARAVY Dmitry

dk.seecore@gmail.com

http://www.seecore.org

http://www.format-project.eu